

Southampton

Setting the Context for CCS

by

Dr Simon Reeve

The LRET Research Collegium Southampton, 11 July – 2 September 2011 Lloyd's Register Group

Global Trends in Power Plant Development Setting the context for CCS

Simon Reeve Power Sector Director Energy July 2011

LIFE MATTERS

Lloyd's Register Group

Global Trends in Power Plant development

- Lloyd's Register An overview
- Global Trends in Power Plant development
 - Electricity production 2010 2040
- Power Technology Development
 - Nuclear
 - Thermal (Coal, Gas, Carbon Capture & Storage)
 - Renewables (Wind, Marine)
 - Other Power Technologies
- Conclusion
- Appendix

How we started

- in a 17th Century Coffee house in London owned by Mr. Edward Lloyd
- customers formed the 'Register Society' in 1760 to examine merchant ships and 'classify' them. The first 'Register of Ships' was published in 1764 – "Lloyd's Register"
- other customers formed 'Lloyd's of London' the finance institution no relation to Lloyd's Register!

Lloyd's Register Group The Group at a glance

- 7,500 employees of 90 nationalities
- 101 companies
- Celebrating our 250 year anniversary this year
- Four business divisions:
 - Marine
 - Energy
 - Transportation
 - Management Systems (LRQA)
- Anticipated annual turnover \$1.0bn

Lloyd's Register Group

- Classification
 - standards of quality and reliability
 - new construction surveys
 - surveys on existing ships
- Statutory certification
 - international conventions and codes (IMO)
 - reference: ship safety and marine pollution
 - on behalf of national administrations
- Technical services
 - specialist advice at all stages: design/ construction/ operation/ disposal
 - 24-hours emergency response service

Lloyd's Register Group Transportation

- Services to help improve rail systems safety, quality and asset management
- Strategic and economic management consultancy services to the wider transport sector:
 - Lloyd's Register Rail has technology and assurance focus
 - BSL Management Consultants focuses on the economic, organisational and corporate governance issues
- Recent projects include:
 - Taiwan High Speed Rail Project
 - Palm Jumeirah monorail system in Dubai
 - Metro safety assessment, signal in China
 - ISA for signal system lifecycle on Incheon Maglev, Korea

Lloyd's Register Group Management Systems (LRQA)

- Business Assurance approach
- Assessment and certification
 - quality/ environmental / health and safety standards
 - ISO 9000 and ISO 14001
- Verification
 - EC directives
 - Carbon emissions
- Serve many industries
 - over 35,000 clients in 110 countries
 - food/ telecommunications/ aerospace/ automotive/ pharmaceutical, IT...

Lloyd's Register Group Energy - Upstream

Example applications:

- fixed offshore platforms
- pipelines (offshore / onshore)
- semi-submersibles / drilling ships
- FPSO / FSO / FLNG

- verification
- optimising risk-based inspection
- classification guidance
- risks and procedures

Lloyd's Register Group Energy - Downstream

Example applications:

- storage (tank farms, underground gas storage)
- petrochemicals
- bulk chemicals

- optimising risk-based inspection
- life extension studies
- risk consultancy

Lloyd's Register Group Energy - Nuclear Power

Example applications:

- first-generation nuclear power plants
- new power plants

- design approval
- asset integrity management with bespoke
- software solutions
- regulatory compliance assessment
- risk consultancy
- asset management system certification

Lloyd's Register Group Energy - Thermal Power

Example applications:

- New-build fossil plant
- Rehabilitation of existing plant
- Carbon, capture & storage

- asset integrity management with bespoke software solutions
- supply-chain verification
- regulatory compliance assessment
- risk consultancy
- asset management system certification

Lloyd's Register Group Energy - Renewable Power

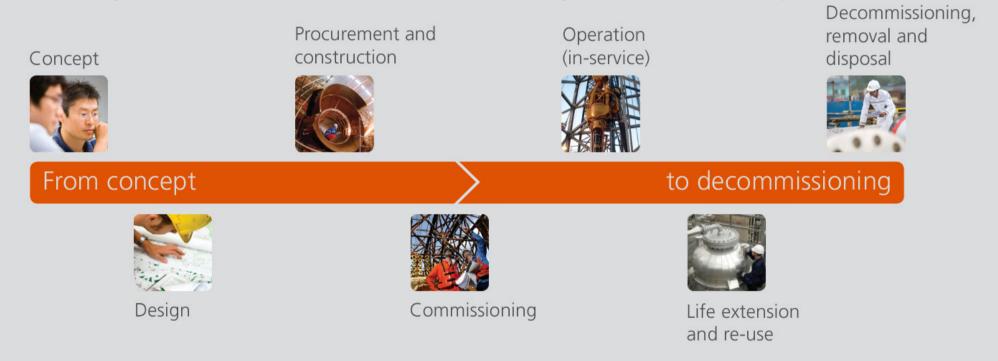
Example applications:

- Off-shore wind
- On-shore wind
- wave and tidal / marine renewables

- project certification (IEC TS 61400 22)
- wind turbine design evaluation
- support structure manufacturing surveillance
- PAS 55, HSE and IV&V
- measurement and failure investigation

Lloyd's Register Group Energy - Manufacturing

Example applications:


- pressure systems
- ports and cranes
- containers

- advice on ASME, EN standards and
- EU directives
- risk-based vendor inspection
- design appraisal

Lloyd's Register Group Energy - Asset life cycle

We bring added value for our clients at each stage of the asset life cycle.

Lloyd's Register Group Energy - Supply chain

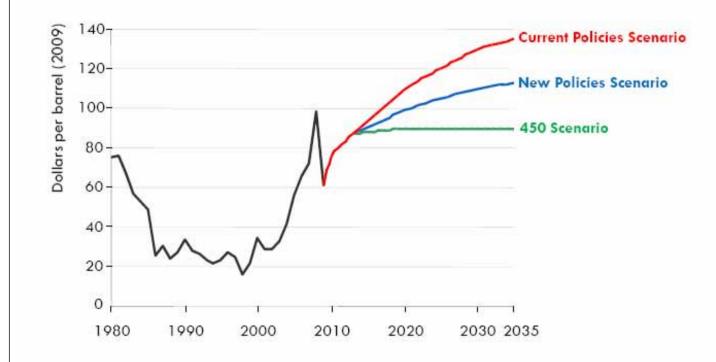
From deep water applications

We work with businesses operating at every stage of the energy supply chain.

Recovery: exploration and extraction

Processing: refining, storage, conversion and power generation

Delivery: transmission and distribution



to onshore applications

• Oil prices continue to rise though policy action will have a significant effect on the rate & stability.

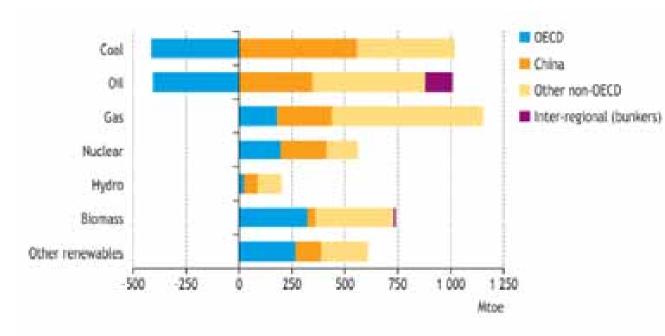
Oil price changes in period 2008 - 2035

Source: OECD/IEA 2010. "450 scenario" refers to a scenario where the long-term concentration of greenhouse gases in the Earth's atmosphere is limited to 450 parts per million of carbon-dioxide equivalent

Lloyd's Register Group Global Trends

- Global Energy use grows by 36%
- Lead is China with 75% growth

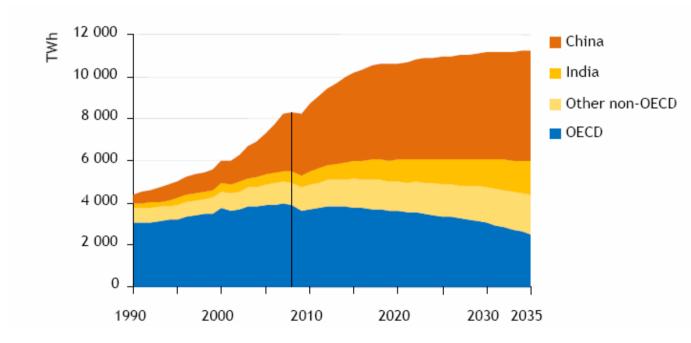
World Primary Energy Demand by region In New Policies scenario



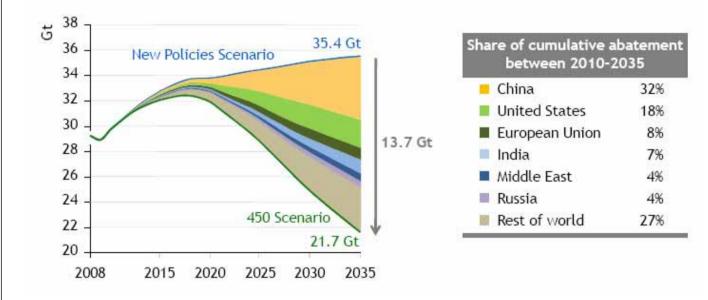
Lloyd's Register Group Global Trends

- The change in fuel source for primary energy demand is markedly different for OECD and non OECD countries.
- Thermal fossil power (Coal, Oil & Gas) continue to grow globally
- Nuclear primary growth is strong in OECD, China & other countries
- Renewables growth is similar in both markets.

Change in Primary Energy demand

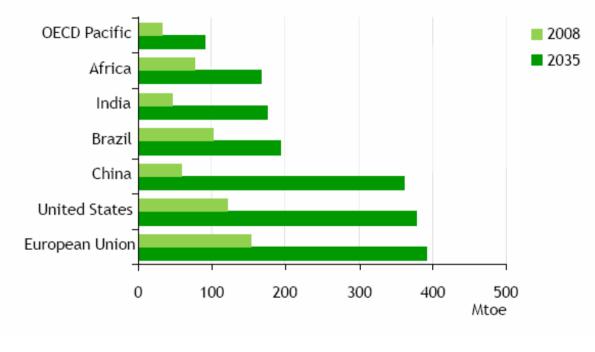

in New Policies Scenario, 2008 - 2035

 A drop in coal-fired generation in the OECD is offset by big increases elsewhere, especially China, where 600 GW of new capacity exceeds the current capacity of the US, EU & Japan


Coal-fired electricity generation by region In the New Policies scenario

- CO₂ abatement technologies will have a significant impact on the balance of power technologies employed.
- Progress in adopting these technologies will accelerate in the period up to 2020.
- EMEA and Americas are likely to adopt in parallel. Asia will follow within a 5–10 year period.

World energy-related CO2 emission savings in <u>450</u> scenario, 2008 - 2035



Source: OECD/IEA 2010.

- Tripling of renewable energy driven by electricity supply rising from 19% in 2008 to 32% in 2035
- Largest growth in EU, US & China

Renewable primary energy demand New Policies Scenario 2008 - 2035

Lloyd's Register Group Nuclear Power

A: Sin

HALL HE HERE

107.00

-

Lloyd's Register Group Nuclear Power Drivers

Benefits

- Fuel availability
- Low emissions
- Advanced technology

Challenges

- Cost
- Safety

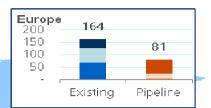
Lloyd's Register Group Nuclear Technology

Current reactor technology is Generation III+ Pressurised Water Reactors. (PWR)

Leading designs: EPR (Areva) AP1000 (Westinghouse)

Currently under construction:

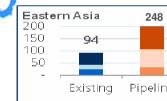
EPROlkiluoto (Finland)Flaminville (France)Taishan 1 & 2 (China)AP1000Sanmen (China)Haiyang (China)


Major programme to replace end-of-life Magnox & AGR plant.

UK:

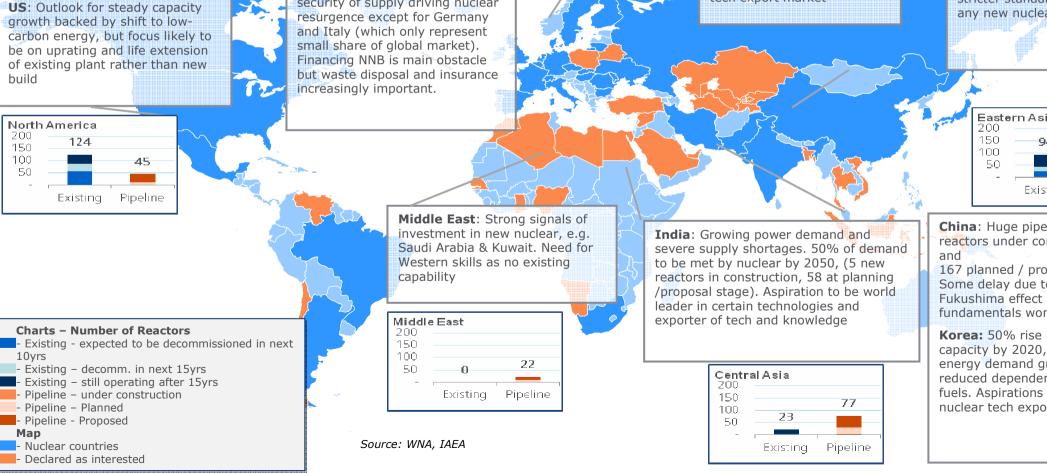
Lloyd's Register Group

Nuclear landscape & trends



Europe: Decarbonisation and security of supply driving nuclear small share of global market). increasingly important.

Russia 200 150 54 100 32 50 Existing Pipel ne


Russia: Strong growth in domestic plant-building, supported by healthy nuclear tech export market

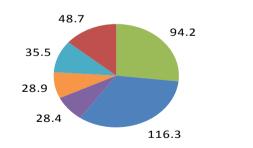
Japan: Wide-ranging domestic & alobal implications from Fukushima - Some nuclear programmes being reconsidered; some accelerated decommissioning of plant: most programmes unaffected as key drivers unaffected; but likely stricter standards for any new nuclear

China: Huge pipeline (26 reactors under construction 167 planned / proposed). Some delay due to Fukushima effect but fundamentals won't change.

Korea: 50% rise in installed capacity by 2020, driven by energy demand growth and reduced dependence on fossil fuels. Aspirations to be major nuclear tech exporter



Lloyd's Register Group

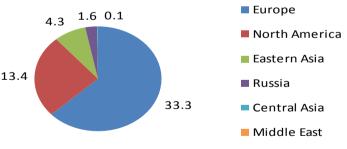

Nuclear Market value*

Europe

Russia

New build construction costs in period 2022-2031 (total: £352.0bn)

ew build costs: includes pre-construction, construction ngineering, procurement and construction) and contingency sts, excludes interest during construction


Fuelling & Operation Front-end fuel cycle annual cost (£bn) Middle 20 16.3 East 15.9 Central 13.9 15 Asia 2.8 Russia 6.4 5.0 10 4.4 3.6 2.8 Eastern 5 Asia 5.6 4.2 4.3 North America 2011 2021 2031 Back-end fuel cycle annual cost (£bn) Middle 5.4 5.3 6 East 4.6 Central 4 0.9 Asia 2.1 1.7 Russia 1.5 1.2 2 0.9 Eastern Asia Eastern 1.9 1.4 1.4 Asia North 2011 2021 2031 America O&M annual cost (£bn) 13.4 Middle East 28.6 28.7 27.3 Middle 30 Central Asia East 3.5 Central North America 20 6.1 7.8 Asia 8.1 Russia 6.7 5.2 10 13.4 Eastern 10.1 10. Asia North 2011 2021 2031 America

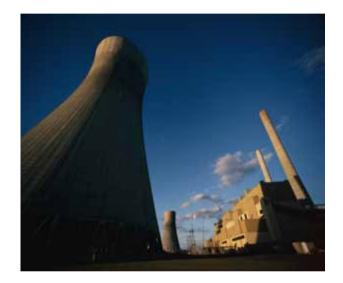
Front-end: Uranium mining & milling, conversion, enrichment & fuel fabrication

Back-end: Spent fuel transport, storage, reprocessing & disposal

Decommissioning costs in period 2022-31 (total: £52.7bn)

*Estimate based on forecasts of new nuclear build programmes and remaining operational life of existing Source: World Nuclear Association (WNA), OECD NEA, IEA, IAEA, Pwd analvsi

Lloyd's Register Group Thermal Power



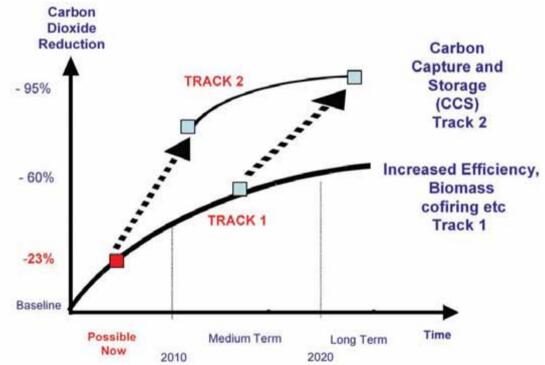
Lloyd's Register Group Thermal Power Drivers

Benefits

Fuel availability & price – gas, coal Low capital & operating cost Gas CCGT plant quick to build & commission Mature technology

Challenges Emissions – CO2,NOx, SOx Safety

Coal-fired Plant

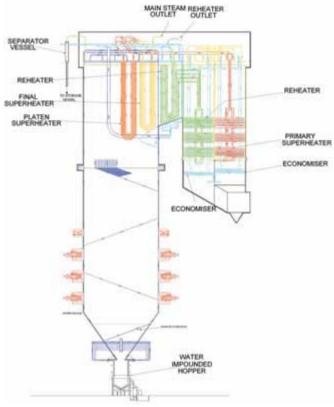

<u>2 aims</u>

- 1. Increase efficiency (less fuel / MW)
- 2. Decrease Emissions (NOx, SOx, CO₂)

Boiler Technology

Pulverised Fuel (PF) boilers

- subcritical 30-35% η_{th} (300bar / 600C / 620C)
- current advanced supercritical (ASC) 46-48% η_{th} (300bar / 600C / 620C)
- future ASC 50-55% η_{th} (350bar / 700C / 720C)



Coal-fired Plant

Best Available Technology (BAT)Steam Conditions: ~300bar / 600C / 620CNet thermal Efficiency: ~46% η_{th}Selective Catalytic Reduction (SCR) for NOx emissionsFlue Gas Desulpherisation (FGD) for SO2 emissionsElectrostatic Precipitator (ESP) for particulate removalPlant Layout supports space for carbon capture equipmentRetrofit capability for higher temperatures & pressures, biomass co-firing & CCS

Main challenge to 700C technologies: material & cost limitations (large volumes, high Ni-content alloys)

Natural Gas fired plant

NG preferred technology

- 1. Availability
- 2. Price
- 3. Ease of transport & storage
- 4. Quick to build/commission
- 5. Flexible load operation

GT26 Gas Turbine (Alstom)

H2 under development

Back-up to NG but likely 30+ years away from H2 economy

Combined-cycle (CCGT) norm for large-scale power generation η_{th} 57-58%

High efficiency, load flexible, low emission CCGTs

Alstom GT26 upgrade:

61% efficiency claimed 99.55% of full load efficiency at 80% load. Turn down to 40% load & maintain emission compliance: NOx <25ppm, CO<5ppm

Siemens: SGT5-8000H/Irsching 4: 60.75% CC efficiency witnessed at 578MW

Mitsubishi: M701F4:

approaching 60% at 478MW

Source: Powergen Europe: 7 June 2011

Lloyd's Register Group Renewable Power

YYYYYYYY

Lloyd's Register Group Renewable Drivers

Benefits

- Free fuel!
- Low emissions

Challenges

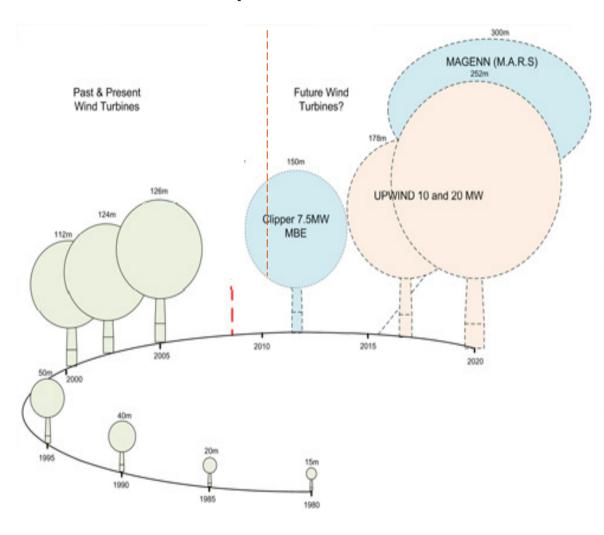
- Intermittency
- Technology maturity
- Energy density
- Cost

Renewable Technology Wind development

Continued development in Onshore wind

Latest development is Offshore wind

- EU North Sea ~100GW to be installed UK, German & Dutch sectors
- East Coast China 21GW
- US
- France


Key issues

- Design for offshore environment
- Shallow, deep water & floating foundations
- Installation & support vessels
- Transmission & Distribution networks

Lloyd's Register Group Renewable Technology Wind development

37GW UK sector – £100bn capex

27GW German sector

5GW Dutch sector

Renewable Technology Marine Renewables

Tidal

- Several technologies
- Demonstration projects: Bay of Fundy (Canada) 2012; Pentland Firth (Scotland) 2013
- Commercial Operation ~2015?
- Technical challenges:
 - marine environment,
 - civil engineering & power take-off on sea bed,

Wave

- Earlier in development.
- Many technologies
- Commercial Operation ~2020?

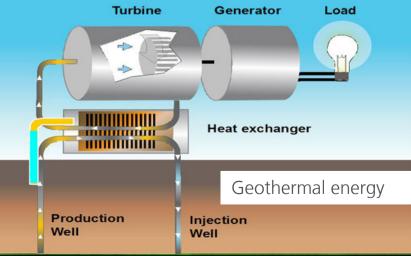
Atlantis Resources Corporation Tidal Turbine

Ocean Power Technologies Wave Buoy

Other Power Technologies

Biomass / co-firing of power plants

Burning of "biomass" such as wood, waste etc to generate electricity. One of the most attractive and easily implemented biomass energy technologies is cofiring with coal in existing coal-fired boilers. Biomass can substitute for up to 20% of the coal used in the boiler.


• Solar Thermal

Solar energy is converted into thermal energy, usually steam, that in turn is converted to electrical energy using a turbine and generator.

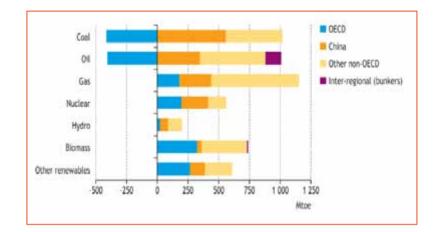
Geothermal

Thermal heat obtained from the Earth's interior is converted into electricity using a heat exchanger connected to a turbine generator set. Geothermal energy is also used for district heating, for example in Reykjavik where a district heating system provides heat for 95% of the buildings.

Other Power Technologies

- Hydro
- Solar PV
- Grid Technologies (Transmission, Distribution & Smart Grids)
- Energy Storage
- Fuel Cells
- Water & Desalination

Reverse Osmosis Desalination Barcelona, Spain


Challenge:

To link together with traditional plant in smart regional solutions

Conclusion

- Energy is essential to life and development
- Key drivers are fuel, cost & environment
- Relative merits of drivers change as technologies develop
- Fossil-fired electricity generation will continue to dominate on the world stage.
- Carbon Capture and Storage is sought as a means to use the fuel we have, in a manner that is acceptable to our environment and at a cost that is sustainable.

Change in Primary Energy demand, 2008 - 2035

Global Trends in Power Plant development

- Lloyd's Register An overview
- Global Trends in Power Plant development
 - Electricity production 2010 2040
- Power Technology Development
 - Nuclear
 - Thermal (Coal, Gas, Carbon Capture & Storage)
 - Renewables (Wind, Marine)
 - Other Power Technologies
- Conclusion
- Appendix

Capacity and investment needs in power infrastructure New Policies Scenario

	2010 - 2020		2021 - 2035							
	Сарас	city (GW)	Inve	estment (\$2009 bi	illion)	Сарас	city (GW)	Inve	estment (\$2009 bi	llion)
	Additions	Retirements	New Plant	Transmission	Distribution	Additions	Retirements	New Plant	Transmission	Distribution
OECD	777	424	1490	370	851	1208	770	2502	373	892
North America	322	207	585	169	363	520	324	1039	197	424
United States	262	191	498	140	302	411	273	873	160	345
Europe	337	158	694	110	332	498	348	1080	128	386
Pacific	118	59	211	91	156	190	98	383	48	82
Japan	74	50	120	63	105	111	61	211	28	47
Non-OECD	1542	232	2165	617	1328	2146	554	3477	808	1734
E.Europe/Eurasia	161	123	252	43	144	231	157	413	51	170
Caspian	29	13	35	10	33	30	18	37	8	28
Russia	91	62	143	18	60	138	94	254	22	74
Asia	1095	74	1526	472	975	1494	244	2347	613	1265
China	773	38	1054	306	632	760	142	1168	274	566
India	200	22	288	102	210	428	58	679	197	407
Middle East	114	10	129	29	59	144	70	229	49	102
Africa	76	8	109	28	57	138	45	235	42	88
Latin America	95	17	149	45	93	138	38	254	53	110
Brazil	45	7	72	22	46	64	12	126	29	60
World	2319	656	3655	986	2179	3354	1324	5979	1181	2626
European Union	331	170	685	103	307	469	346	1027	117	348

Source: IEA 2010 New Policies Scenario

Regional Focus – Europe Summary

Mix	<u> 2008</u> –	<u> 2035 </u>	Utilities/Developers	<u>OEMs</u>
Electricity	y demar	nd x 2	EDF Vattenfall	Alstom Siemens
Coal	26%	10%	RVVE	GE
Gas	24%	24%	Iberdrola	Mitsibushi
Renew.	20%	44%*	EoN	Mitsui Babcock
Nuclear	26%	21%	Endesa	
			EnBW	
*Hydro 15%, Wind 18%, Solar 3%				

Source: IEA 2010 New Policies Scenario Electricity Generation (TWh)

Regional Focus – Middle East Summary

<u>Mix</u> <u>2008</u> –	► <u>2035</u>	Utilities/Developers	<u>OEMs</u>
Electricity demand x 2		EDF Vattenfall	Alstom Siemens
Gas 58% Renewable 1%	63% 16%*	RVVE Iberdrola	GE Mitsibushi
Nuclear <1%	2%	EoN	Mitsui Babcock
*Hydro 3%, Wind !	1 5%, Solar 6%		

Regional Focus – India Summary

<u>Mix</u> <u>2008</u> →	<u>2035</u>	Utilities/Developers	<u>OEMs</u>
Electricity demand x 4		Examples: APGENCO	Alstom GE
Coal 69%	52%	Essar Energy Larsen & Toubro	Mitsibushi
Gas 10%	14%	NTPC	Mitsui Babcock
Renewable11% 27%*		NPCIL	Siemens
Nuclear 2%	6%		
*Hydro 13%, Wind 6	¹ %, Solar 4%		

Regional Focus – China Summary

<u>Mix</u> <u>2008</u> →	<u>2035</u>	Utilities/Developers	<u>OEMs</u>
Electricity deman	d x 3	Big 5: China Datang Corporation China Guodian Corporation	Alstom GE
Coal 79%	55%	China Huadian GroupSiemensChina Huaneng GroupShanghaiChina Power InvestmentHarbin Ster	Siemens
	9% 29%* 5%		Shanghai Electric Co. Harbin Steam Turbine Co. Dongfang Electric Co.
*Hydro 14%, Wind 79	%, Solar 2%	China Guangdong Nuclear Power Group CGNPG	

Source: IEA 2010 New Policies Scenario Electricity Generation (TWh)

Regional Focus – United States Summary

<u>Mix</u> <u>2008</u> –	<u>2035</u>	Utilities/Developers	<u>OEMs</u>
Electricity demand x 1.2		AES Corporation Southern Company American Electric Power	Alstom GE
Coal 49%	33%	Duke Energy	Mitsibushi
Gas 21%	23%	Luminant	Mitsui Babcock
Renewable16% 27%*		Reliant Energy	Siemens - Westinghouse
Nuclear 18% 19%		Pacific Gas and Electric Co. Allegheny Energy	
*Hydro 12% & \	Wind 10%		

Key Organisations & Links for data

International Atomic Energy Association (IAEA):	www.iaea.org
International Energy Agency (IEA):	www.iea.org
IEA World Energy Outlook:	www.worldenergyoutlook.org
IEA World Energy Statistics:	www.iea.org/stats/
<u>Europe</u>	
Nuclear Energy Agency:	www.nea.fr/
Europe Energy Portal:	www.energy.eu/
EoN	www.eon.com
EDF	www.edf.com
Endesa	www.endesa.es
Iberdrola	www.lberdrola.es
RWE	www.rwe.com
Vattenfall	www.vattenfall.com

<u>UK</u>

Nuclear Industries Association Department of Energy & Climate Change UK Energy Statistics (HANDOUT) www.niauk.org www.decc.gov.uk www.decc.gov.uk/en/content/cms/statistics/publications/dukes

For more information, please contact:

Simon Reeve Power Sector Director, Energy

Lloyd's Register group entity 71 Fenchurch Street London, EC3M 4BS

T +44 (0)20 7423 2160
E simon.reeve@lr.org
w www.lr.org/energy

